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How does beetle-kill affect fire
behavior??

« Literature offers conflicting results —why?

1. Lack of fundamental data

2. Perspective confusion: immediate vs later in
time

Immediate Later in time
3. [Difficult to separate environmental conditions

from fuels states for real fires

4. Models used to answer these questions were
not designed to handle these situations
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We can demonstrate that
- Red trees: drier, ignite faster

| Faster heat release => higher |ntenS|ty ;
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Overview

Modeling 101
Empirical vs. mechanistic models

Operational fire models
limitations in MPB fuels

Dynamic fire models
Getting under the hood on how fires burn
MPB & fire: a complex problem
Immediate (single point in time)
Fuel changes over time
Conclusions
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What are models?

A representation of something

An abstraction




Models In science  “Out of data

: : : _ range”
*Describe or explain relationships

*Often used to predict outcomes
 “what if” scenarios

Broad classes of mod_els:
__ lifespan
Empirical — based on

goservaticy or
experiments

/ #TV’s

Mechanistic / Process — attempt
to explain how things work



What are Fire Models?

« Computer programs which calculate how
fires are expected to burn under particular
weather conditions
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“Uses,of modeling in fire management
<. Planning (strategic)
Resource allocation / staffing / status

Evaluation of alternative actions (Legal --
NEPA — EIS/EA)

Risk and hazard analysis
Operational (tactical)

Firefighter and community safety

When to evacuate?

How to fight it?

After Action reviews / Legal




Where we are coming from: modeling
fuels and fire behavior

* Rothermel model 1972

« semi-empirical: based on
laboratory fuel bed burns

* quick calculations: faster than
real time

Simplifying assumptions:
fuels are homogeneous & ) RN
continuous T e g
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Laboratory test burn

*Quasi-steady state spread

Mechanisms of heat transfer not
explicitly addressed



gl models
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Fire Spread
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The spatial nature of fire
SA/V é“ = : /
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Wil it burn? heat

heat Enough? A
\\\ Right size? fuel O,

Right spacing?

Distance
from heat
source

Radiative heat flux



Inconvenient truths about wildland fuels:

Not continuous:
Clumpy, with voids
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Not homogeneous:
Highly variable in ~~ Need to be able to

composition, structure dascribe and quantify fuels
and arrangement
better



® How well does a
single number really
describe wildland
fuels?

® At what scale is
this simplified fuel
description
appropriate?

® How do we know?
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The Goldilocks Zone

Probability
of crown fire |




Fire behavior in the “Goldilocks

zone”
Subtle changes in conditions lead to
large changes In fire behavior
Very conditional, in transition: dynamic

Operational models do NOT give
reliable answers here!

New approaches are needed



Limitations of current models

In beetle-kill stands

Don’t capture fuel heterogeneity — e.g. % of trees
bug killed

No within-stand spatial aspects
Models can’t handle standing dead foliage
Not reliable for transition to crown fire

Don’t address changes in spotting (either source or
target)

Couplings can produce rapid changes — not
addressed by current models

Do not adequately characterize potential threats to
firefighter safety







Dynamic fire models
[ g

. |
Finer scale: many small cells, 3D ==
Mechanistic: robust physics

“Coupled”: fire-atmosphere, fire-fuels, fuels-
atmosphere, topography-atmosphere

Computationally demanding

Research emphasis: not yet used In
management ... BUT

... have big potential for guiding
management.




Dynamic fire models

Two main models rrEm
1) FIRETEC
Los Alamos National Lab — Rod Linn
Very strong on wind field, topographic infl.
2) Fire Dynamics Simulator (FDS)
N.I.S.T -- William Mell

Structure fire origins, adapted for wildland
fire




Dynamic Fire Simulation — FIRETEC model




Fire iIn unthinned stand — FDS model

mokaview 5.5.2 - Mar 29 2010




Fire after thinning

Smokeview 5.5.2 - Mar 29 2010
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Windfield visualization — thinned forest

mokaview 0.5.2 - Mar 23 2010




Wind transport of burning embers: a critical
component in wildfire spread




NEproring the
kGoIdiIocks Zzone:
MPB fuels and

fire behavior
thresholds




Fire iIn unthinned stand — FDS model

mokaview 5.5.2 - Mar 29 2010




unthinned stand w. 60% bug kill + structure protection

srokeview 546 - Jec 3 2009




\MPB
‘attacks —
Immediate
effects




Real Fuels Data - 11 Sites

Site#  Trees  BA(m® ha?)
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Red stage fire intensity increases with
% beetle Kill




Results: Red phase

Stand structure differences between sites were also significant
but did not have strong effects compared to % Kkill
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Box and whisker plots showing the predicted canopy fuel
consumption and crown fire intensity by percent mortality. Box
and whisker diagrams labeled with a * are significantly different
(a = 0.05) from the zero mortality simulation.
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Vegetation and avian community
response to a mountain pine beetle

epidemic in the Elkhorn Mts, Helena NF
Brittany Mosher & Victoria Saab
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MPB attack — over time
Peak trees killed in 2008 / 2009 ‘

Number of trees

4 Different areas

Pre-2007 |
2007
2008
2009

Mountain pine beetle (MPB) survey -- Elkhorn Wildlife Management Unit,
Helena National Forest. Data collected August 24-27, 2010. Joel Martin &
Barbara Bentz.



Snag Densities
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Saab & Mosher

Gray stage: large areas —
how long will it persist?

Before




Simulating Beetle kill spread: tree to tree
Low and slow mortality pulse




Simulating Beetle kill spread: tree to tree
Low and slow mortality pulse

Tree status over time
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Low and Slow mortality pulse

Time = 1 sec

7 yrepost attack 15 vyr. post attack



Low and Slow mortality pulse

Before attack 4 yr. post attack

7 yr. post attack 15 vyr. post attack



Simulating Beetle kill spread: tree to tree
High and fast mortality pulse
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Simulating Beetle kill spread: tree to tree
High and fast mortality pulse

Tree status over time
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Before attack

4 yr. post attack 5 yr. post attack



High and Fast Mortality Pulse

2 yr. post attack

4 yr. post attack

5 yr. post attack
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Conclusions: MPB & fire

Immediate (point in time)

MPB attacks significantly affect flammability in red
stage

“Goldilocks zone™ — lots of factors can influence —
difficult to predict. Be cautious!

MPB fuel changes over time

dependent on nature of attack in space and time, stand
structure etc.

Complex: fuel continuity, wind field dynamics, surface
fuel loads and crown fuel flammability are ALL in flux

Strong need for continuing research

Spotting, fire brands, fuel change /microclimate
dynamics




Fire Modeling: take home messages

Operational fire

models

— have issues w MPB fuels -- continue to

use -- but with
Dynamic fire m

wider margins of error
odels

can provide more detailed information for

evaluating suc
Need to start d

N complex Issues.
eveloping greater capacity to

use these moc

els in management
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Feel free to contact me at an
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